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INTRODUCTION

Graphite reinforced metals are especially attractive for

structures which require a high degree of dimensional stability.

These composites possess high axial moduli and near zero axial

thermal expansion coefficients. They are currently being developed

for satellite components such as antenna supports and wave guides.

Since these materials will be employed on satellites, they will

be subjected to temperature extremes caused by solar radiation.

However, experiments over typical orbital temperature cycles by

several investigators, references 1 and 2, have found that the

composites exhibit nonlinear thermal expansions. The data

typically show a response such as that plotted in Figure 1.

The figure shows that as the material is cooled from room

temperature it initally contracts with the expected thermal

expansion coefficient. However, near 0°F the thermal response

changes drastically and the material actually expands as it

cools. Once it reaches the minimum temperature (-225°F),

and is then heated it continues to expand but again it responds

with the expected thermal expansion coefficient. As the

temperature rises to near 50°F, the expansion coefficient again

changes and the material begins to contract slightly. This

continues to the maximum temperature of 275°F. Then as the

material is cooled it contracts as expected. The data also

show that the material does not return to its original starting

strain but contains a permanent set. Further thermal cycles

appear to cause additional residual strain but less per cycle.

The nonlinear thermal expansions and the permanent set exhibited

by these materials can be potentially very damaging to components

that are designed on the basis of dimensional stability.

A major cause of the nonlinear thermal expansions is the

yielding and subsequent plastic behavior of the matrix material.

Metal matrix materials are fabricated by combining the constit-

uents at high temperatures where the matrix is nearly molten.

As the composite cools, the matrix begins to solidify and

stresses are generated because of the difference in thermal



expansions of the constituents. In the case of a graphite/

aluminum composite (e.g. P100/6061), the matrix contracts and

the fibers expand as the material cools. This generates tensile

stresses in the matrix as shown schematically in Figure 2.

Figure 2 shows qualitatively the composite thermal expansion,

the stress-strain behavior of the matrix and the motion of the

matrix yield surface as the composite cools from its stress-

free temperature. At the stress free temperature (point 1 in

Figure 2) the matrix stress is initially zero and the composite

thermal strain is zero. As the material cools, the composite con-

tracts and tensile stresses build up in the matrix. At some

temperature, the stresses in the matrix will reach the yield

point of the material (point 2 in Figure 2). Further cooling

causes the matrix to deform plastically with a reduced stiffness

which results in a nonlinear composite thermal expansion.

The plastic deformation also causes the matrix yield surface

to move in stress space. (The motion of the yield surface

assumes that aluminum hardens kinematically). When the temp-

erature reaches its minimum value (point 3 in Figure 2) the

composite thermal expansion will be nonlinear, the matrix will

be in a plastic state and the matrix yield surface will have

shifted due to the large tensile stresses.

If the composite is now heated, the material will behave

as shown in Figure 3. During heating the matrix will expand

and the fibers will contract. In this case the stresses in

the matrix will be compressive. The compressive stresses cause

the matrix to unload elastically which results in the initial

linear composite thermal strains shown in Figure 3. During the

first portion of the heating cycle the composite expands

linearly, the matrix unloads with an elastic stiffness and the

stress point moves back across the center of the yield surface.

Further heating, however, will generate compressi-ve stresses in

the matrix large enough to reach the yield point (point 4 in

Figure 3). Notice that the yield point in this state is not

the same as the initial compressive yield stress of the matrix.

The compressive yield point has shifted because of the high

tensile stresses generated during the cooling cycle. This is

referred to as the Bauschinger effect and is characteristic of
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aluminums. Heating above the compressive yield temperature will

cause the matrix to deform plastically, the composite thermal

expansion to be nonlinear and the matrix yield surface to shift

in the direction of the compressive stresses. When the composite

reaches its maximum temperature the thermal expansion will be

nonlinear, the matrix will be plastic and the matrix yield

surface will have shifted because of the high compressive

stresses.

Clearly, if the temperature is now varied through subsequent

cooling and heating cycles, the process will repeat and qualita-

tively follow the same pattern as shown by the experimental data

in Figure 1. The actual process will be more complex than that

outlined in Figures 2 and 3 because the constituent properties

will vary with temperature, the matrix will be in a multiaxial

stress state and local failures (e.g. matrix microcracks and

interface debonding) may occur. However, Figures 2 and 3 rep-

resent a simple, qualitative description of the process and

provide a starting point for the investigation of nonlinear

metal matrix composite behavior.

The experimental data shown in Figure 1 and the qualitative

explanations described in Figures 2 and 3 focus upon the behavior

of unidirectional graphite reinforced composites. Although

most of the applications for graphite/metal composite investigated

to date have involved unidirectional materials, research work is

beginning to shift to laminates. Clearly, it will

be necessary to fabricate and design graphite/metal laminates if

these materials are ever going to be used in more demanding two-

dimensional structures such as plates and shells. The

behavior of the laminated materials, however, will be strongly

influenced by the behavior of the unidirectional composites.

The nonlinear response of the lamina will cause nonlinear

behavior of the laminate. Thus, in order to fabricate,test,

design and understand graphite/metal laminates it is necessary

to,develop a laminate analysis method that accounts for the

nonlinear behavior of the individual laminae.

The technical study detailed in this report describes the

development of a nonlinear,temperature-dependent,incremental

laminate analysis. The following sections detail the background,

objectives, approach and results of this study.

3



BACKGROUND

Nonlinear composite laminate response includes the study of

two related problems. The first is the nonlinear response of the

unidirectional material which defines the layer properties to be

utilized in the laminate. The second problem is the proper

combination of the layer properties to determine the effective

laminate response. Several investigators have analyzed both

the nonlinear response of the unidirectional material and the

nonlinear response of a composite laminate. In order to study the

nonlinear metal matrix response, the previous analyses have been

reviewed to understand alternate approach es to the problem. The

discussion of the previous work is separated into sections on

unidirectional response and laminate response.

NONLINEAR UNIDIRECTIONAL MATERIAL BEHAVIOR

The previous studies of nonlinear unidirectional behavior

can be divided into two general categories which are designated

finite element analysis and approximate stress fields. Each

of these categories is discussed below.

Finite Element Analyses

Several authors have used finite element or numerical

approaches to study nonlinear behavior of unidirectional

composites, references 3 to 7.

Lin, et al., reference 3, analyzed a unidirectional

composite under an axial mechanical load. The results showed

that the fibers and matrix carry equal strain and that the

matrix yields uniformly when the matrix stress equals the yield

stress.

Adams, reference 4, investigated a rectangular array of

fibers in a plastic matrix under a transverse load. He allowed

the matrix elements to yield sequentially and computed nonlinear

transverse stress-strain curves of Boron/Aluminum composites.

Comparisons with experimental data showed excellent agreement

to the point where the matrix stress in an element was equal

to the ultimate matrix stress. At this point, the analysis

was terminated although the experimental data showed further



composite load carrying capability. Adams postulated that at

this load the matrix began to develop microcracks. Although

these cracks reduced the stiffness of the composite, they grew

in a stable fashion allowing the composite to contain several

cracks before finally failing.

Foye, reference 5, adopted a similar approach to Adams

although he included the effects of axial shear and interactions

between transverse tension and shear stresses. He also analyzed

B/A£ along with Gr/Epoxy and B/Epoxy. His analytical results

for B/A£ were similar to Adams although he made no comparisons

(other than qualitatively) to experimental data. He found that

there is a significant interaction between shear and transverse

stresses. For example, his results show that the computed

transverse stress-strain curve depends upon the magnitude of

the axial shear stress.

Dvorak et. al., reference 6, utilized a hexagonal array

finite element model to investigate yield surfaces of uni-

directional, composites. This paper includes a good description

of the boundary conditions required to analyze loads due to a

general stress state and temperature change. The composite

yield surfaces are computed by finding the applied composite

stress which causes yielding in any matrix element. His

results show that a unidirectional composite yield surface can

be described in four dimensional stress space (aa, at, ra, rt ).

He found that because the fibers remain elastic, uniform temper-

ature increases or hydrostatic stresses can cause yielding in

the composite. Dvorak also computed that a temperature change

of between 50°F and 100°F was large enough to cause significant

yielding in several metal matrix composites.

Hashin and Humphreys, reference 7, used a temperature

dependent hexagonal array finite element model to compute

certain composite stress-strain curves, specifically axial shear

and transverse shear. It was then postulated that the remaining

three dimensional stress-strain relations could be generalized

from this information. Using assumptions of negligible strain

in the fiber direction, and transverse isotropy during plastic

flow, explicit relations were developed that allowed one to



compute nonlinear composite behavior from the computed shear

response. Although the relations were derived in reference 7,

they were not compared with experimental data or other results

to test the theory.

In general, the finite element analyses are all based upon

assumed regular geometries and detailed calculations of the

local micromechanical stress. Since the analysis involves

matrix plasticity, the calculations are nonlinear and require

iterative solutions. Typically this generates considerable

computer costs which limits these methods, although they are

very accurate, from becoming useful engineering design tools.

Approximate Stress Fields

An alternate approach that has been applied to the problem

of nonlinear metal matrix composite behavior can be categorized

as approximate stress fields. These models have typically been

analytical as opposed to numerical. They are based upon simpli-

fying assumptions of the stress field within the material which

allows the calculation of composite level stress-strain behavior.

Several different authors, references 10 and 12 to 17, have utilized

this approach. A description of their studies and a comparison

of their results is outlined in the following paragraphs. The

phase average stress model which was employed in this study and

described in detail in the appendix to this report also assumes

an approximate stress field in the constituents. The major

difference between the phase average model and the approaches

described in this section is in the method utilized to compute

effective unidirectional composite properties. The phase average

model utilizes the composite cylinders assemblage, reference 8,

whereas the methods described here use rule of mixtures models,

reference 9.



Huang, reference 10, treats the composite as rigid inclusions

within a rigid plastic matrix. He uses relatively simple assump-

tions of stress and strain within the composite. For example, he

assumes that because the inclusions are rigid the strains are zero

in the fiber direction and in the transverse directions:

and,

= V m

°2 = vf a2 + vm a2

L12 vf 112 T

el ~ Vm el

e2 ~ Vm £2

Y12 = Vm

These assumptions are consistent with rigid fibers and a rigid-

plastic matrix. Then, by treating the matrix as a power-law work

hardening material, he is able to develop composite stress-strain

relations. He compares his results to finite element calculations

of transverse stress-strain curves and shows relatively good agree-

ment at large strains (i.e.C2>3%)- He further modified the model

to include the elastic strains by adding the strains computed from

a self-consistent method, reference 11. The approach appears valid

for large strains but has limited applicability in typical metal

matrix composites where transverse fracture generally occurs at

strains lower than 1%.

Dvorak and Bahei-El-Din, references 12 through 15, have together

and separately published several papers on nonlinear unidirectional

composite behavior. Their approximate stress field analysis is

termed the vanishing fiber diameter model. They assume that the

fibers have vanishingly small diameters so that the presence of the

fibers does not perturb the transverse and shear stress fields.

This leads to assumed stress and strain fields such that:



and,

vf °33 + vm °33 3 ~ fiber direction

e . . = V,. e . . + v e .
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By further assuming that the fibers are elastic and the matrix is

elastic plastic with a Mises yield condition, they have developed

closed form expressions for the elastic constants and yield sur-

face of the composite. Furthermore, by treating the matrix as a

kinematic hardening material, they are able to develop a harden-

ing law and a flow rule for the composite. They exercise the model

and compare it to experimental data and previous finite element

analyses, (i.e. reference 6). it was found that it was necessary

to modify the matrix material properties in order to predict accur-

ate elastic properties. However, this was not unexpected since
the transverse stress field was assumed to be uniform. Their model

was found to work quite well for materials subjected to mechanical

loading to induce a plane stress state. This implies that the

model will be an excellent tool for nonlinear analysis of laminated

composites under mechanical loads. The model appears to be limited

in its ability to analyze the effects of high hydrostatic stresses

or thermal loadings. The authors point out that the model may give

erroneous results if it is utilized to study the case of cyclic

thermal loadings. It was also found that the yield criterion for

a unidirectional composite will be significantly different than

that assumed by Hill in his anisotropic yield criterion. Therefore,

Hill's yield criterion may be applicable to homogeneous, anisotropic

materials but is not valid for unidirectional composites.



Min, reference 16, and Min and Grossman, reference 17,

describe a model very similar to Dvorak's outlined above. They

include further assumptions that the material is in a state of plane

stress, the matrix is perfectly plastic and that the fiber has a

zero Poisson's ratio. They compare the model to experimental data

to investigate the effects of cyclic thermal loading and cyclic

mechanical loading at various temperatures. They utilize typical

graphite fiber properties and choose matrix properties to match

the measured unidirectional transverse stress-strain curves. The

model shows good agreement with the experimental data although the

calculated results appear to be sensitive to the assumed residual

matrix stress state.

In general, the approximate stress field models appear to be

fairly similar. All assume that the fibers and matrix have equal

strain in the axial direction. For transverse and shear stresses,

the models either assume that the stress field is uniform (Min and

Dvorak) or the composite response is based upon self-consistent

scheme (Huang). The approximate models are also limited to the

study of temperature independent constituent properties. For the

particular problem of thermal cycling, only Min's model has been

compared to data.

NONLINEAR LAMINATE BEHAVIOR

Several authors have published analyses of nonlinear temper-

ature independent laminate behavior. The approach used by most

authors is fairly similar so only a few are included in this review,

references 18 thru 20. The laminate is analyzed in a incremental,

piecewise linear fashion. That is, incremental stresses or loads

are applied to the laminate. Then laminated plate theory is

employed to compute the incremental stress state in each layer.

The layer stress state is then utilized to determine the instant-

janeous stiffness for each layer. The layer response is either

determined from tests on unidirectional materials, reference 19,

[or from a unidirectional material model, reference 18. The layer



stiffnesses are then integrated to give the new composite stiff-

ness and the process can be repeated for the next stress increment.

Of particular interest is a nonlinear laminate analysis, NOLIN,

developed at MSC, reference 20. The theory employed in NOLIN assumed

that the individual plies were nonlinear in axial shear and transverse

stress. Ramberg-Osgood relations, reference 21, were used to

describe the uniaxial response of the plies. Then by postulating

an interaction criterion between the stresses, it was possible to

define a nonlinear, inelastic problem which described the behavior

of the laminate. This led to a system of nonlinear equations

that was solved using a Newton-Raphson technique. The code proved

useful for the analysis of the room temperature behavior of organic

matrix and metal matrix laminated composites. The limitations of

NOLIN with respect to the problem under consideration include

inability to handle plastic strains in the fiber direction and

the assumption of temperature independent properties. Further-

more, the feature which makes NOLIN most attractive is the use of

Ramberg-Osgood relations for the description of the layer response.

In other words, the layer strains are explicit functions of the

layer stresses. In the more general problem outlined in this report

the layer behavior is path dependent and must be solved micro-

mechanically and therefore cannot be written in explicit form.

Thus, it appears that although NOLIN will provide useful background

information for this program, it is not directly applicable to

the general solution under consideration.
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OBJECTIVES

The primary goal of this program was to develop a laminate

analysis code which could be utilized to study the thermal

hysteresis behavior of laminated metal matrix composites. The

specific objectives of the laminate study were to create an

incremental analysis which incorporates the temperature dependent

nonlinear unidirectional material model capable of describing

the behavior of metal matrix composites. The laminate analysis can

be utilized to study the behavior of various metal matrix structures

as potential satellite components. For example, ±0 continuous

graphite fiber reinforced aluminum tubes are being considered

for space trusses. The laminate analysis can be employed to

study the materials to define methods for reducing or eliminating

the thermal hysteresis. Alternatively, if the nonlinear behavior

cannot be prevented, the laminate analysis will serve as a tool

to design materials that are capable of performing their function

in spite of the inelastic behavior. The analytical results will

provide an understanding of the composite behavior and define

directions for improved materials and structures.

It should be emphasized that although the proposed laminate

analysis depends upon the theory which is used to describe the

unidirectional ply behavior, the laminate model will be constructed

in a modular fashion. The unidirectional analysis will be contain-

ed in a subroutine that can be replaced or modified as the under-

standing of the material is improved. Thus, the laminate analysis

will provide a fairly standard framework which can be easily

improved by replacing or modifying the unidirectional material

model. For example, based upon the available results of research

programs which exist today, the best choice of the unidirectional

model is the phase average stress theory described in the appendix.

However, if improvements are made to that model they can be easily

incorporated in the laminate analysis code.
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APPROACH

The technical approach utilized in developing the metal matrix

laminate analysis includes the theory utilized for the temperature

dependent layer model and the theory utilized for the incremental

laminate analysis. The layer model is described in detail in the

appendix to this report. The following section outlines the

incremental laminate analysis.

NONLINEAR LAMINATE MODEL

The nonlinear laminate analysis is relatively straightforward

once the unidirectional problem has been solved. The laminate

analysis is an incremental, piecewise linear model. In order to

describe the laminated plate analysis, consider a single layer (ply)

located in the x-y plane. Following standard laminated plate

theory, reference 9, assume that the significant displacements are

u and v which are linear through the thickness of the plate. In

incremental fashion, these can be written as:

u = u. - z

v = v -o

3w
3x

3w

(1)

Assuming the ply is in a state of plane stress the only stress
• • •

components are o , o and T . The corresponding strains, derivedx y xy
from the above displacement fields are:

3u ,2-
o 3 w

Cx ~ ~3x~ " Z 3~1-
«X

= e + z K
X X

ey =

xy

3y - Z 9y2

ô3y

3v

~3x~

" c

2z 33T37 ~ Yxy + Z Kxy
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Each layer can be described in terms of a stress-strain rela-

tion in principle material coordinates such that:

joxj - [Q] (3)

where Q represents the local layer stiffness matrix and F repre-

sents the local layer thermal stress vector. The stresses and

strains can be transformed into the global plate coordinate system

which results in the following global stress-strain relation:

- te.i
(4)

(5)

In equation (5) Q and r represent the global stiffness matrix and

global thermal stress vector, respectively. It should be pointed

out that since this is a nonlinear problem Q and r will be functions

of the stress and temperature state and therefore represent instant-

aneous quantities.

The equations discussed so far have described the behavior of

each individual ply that are part of the laminated plate. It is

now necessary to combine the properties of the plies in order to

describe the behavior of the laminated plate. In order to do this

it is first necessary to define the forces and moments that act on

the boundary of the plate.

/h
h dz

,6,

Substituting the global stress-strain relations for each ply
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NJ =/h [Q] jej dz + /h [Q]JKJ zdz +/h M AT dz
' -h l ' -h ' ' -h ( ' (7)

JMJ =/h [Q] je | zdz + fh [Q] J K J z 2 d z +f h j r j ATzdz
-h ! ' -h ' ' -h ( '

Rewriting these equations in the more familiar laminated plate

notation.

(8)N

M
•

A ( B

B • D
1

X

S

+

•

T

AT

Equation (8) can be easily inverted to compute laminated plate

strain increments which are caused by increments in plate forces,

moments and temperatures.

The solution then follows a straightforward process for each

load increment as detailed in Figures 4 and 5. Assuming that at

some initial step the laminate stresses and strains are defined,

the load increment in terms of stresses or temperatures is applied

to the laminate. Standard laminated plate theory is utilized to

compute the layer stresses in global coordinates. Stress trans-

formations are employed in each layer to calculate the layer

stress state in principal material coordinates. These layer

coordinate stresses are then applied to the unidirectional material

model to compute stress and strain increments within each layer.

If necessary, the layer properties are modified to reflect changes

in the constituents due to plastic flow or temperature. The layer

properties are transformed into global coordinates and integrated

to give new laminated plate stiffnesses. The incremental stresses

and strains within the material are added to the initial values

to give total stresses and strains. This completely defines the

laminated plate at the end of the load step so that the process

can be continued for the next load increment.

Once the laminate analysis is developed, it can be employed

parametrically to study materials and structures of interest.

The analytical tool can be utilized to understand experimental

data, define improved materials or design metal matrix structures.

14



MODEL VERIFICATION AND RESULTS

Once the layer stiffnesses of a laminate are known, either

through the elastic or the elastic-plastic incremental stress-

strain laws, the complete structural stiffness can be assembled.

For any given increment in the nonlinear laminate analysis, this

assembly process and the subsequent layer stress analysis (based

on the proper incremental stress-strain law) are identical to those

steps of a conventional elastic laminate analysis. That is, the

basic laminate procedures are the same. Therefore, once the

individual layer stiffnesses are known and once the load step has

been verified (legitimate stiffness, legal load path, etc.) the

results of an increment in the nonlinear laminate analysis can be

compared against an equivalent increment in an elastic analysis.

Such comparisons were made in order to verify the correctness of

the nonlinear laminate procedures.

The nonlinear laminate analysis was used to examine a number

of practical problems. These problems considered both thermally

and mechanically loaded laminates. For ease of interpretation

and to gain insight into more complex thermal responses, the

example problems considered here have material properties which are

temperature independent (the next section will release this restric-

tion) .

The laminates that are studied consist of P100/6061 composite

material layers with a 45% fiber volume fraction. The thermophysical

and mechanical properties of the constituent materials are shown

in Table 1 (see the appendix for the reference sources). The temper-

ature independent solutions of this section assume that the material

properties retain their room temperature values. The stress free

state of a P100/6061 composite layer is also assumed to exist at

[room temperature. Because the constituent materials respond

differently to thermal loads (the carbon fiber tries to contract

jaxially while the aluminum matrix seeks to expand during heating)

very large stress levels are reached through relatively small

temperature changes. The matrix material is soon stressed beyond its

15



elastic limit. This plus the fact that P100/6061 is a leading

candidate material for satellite systems, make the laminates of

this material ideal for study by the nonlinear laminate analysis.

THERMAL LOADS

The first problem determines the effect of a single complete

temperature cycle on a set of three different laminates. The

temperature cycle, whose extreme values are characteristic of

orbital temperatures, starts by cooling from an arbitrary stress

free temperature of 75°F to a temperature of -225°F. The temperature

path is then reversed, heating to a temperature of 275°F. The

laminate is then recooled to a temperature of 75°F. The stress

free.temperature was chosen arbitrarily since the purpose of these

analyses are to examine the sensitivity of the model to angle ply

orientation. It will be seen that this thermal cycle induces

sequential phases of mechanical response.

The laminates that are examined are a [+15/-15]s, a [+30/-30]s,

and a [+45/-45]s (which under a thermal load is equivalent to a

cross ply). The normal strain in the longitudinal direction of

these balanced plates, due to the loading of the thermal cycle,

is shown in Figures 6, 7, and 8. Though each of these plots show

a distinctly different response, there is an underlying similarity

in the mechanical state history of the laminates.

All of the laminates show an initial elastic response where

the fibers are growing axially and the matrix is contracting

under the falling temperature. Note that the angle ply laminates

have a total growth response opposite to that of the cross ply

laminate. The [±15]s laminate initially has almost a zero

coefficient of thermal expansion. These initial elastic responses

are corroborated by the axial thermal expansions shown in Figure 9

which is based on a purely elastic laminated plate theory.

During the initial elastic response of the composites shown

in Figures 6, 7, and 8, high levels of stress are quickly generated.

16



In stress space the load path of the matrix material soon reaches

the yield surface. Table 2 is a compilation of the temperature

points at which initial yielding occurs for each of the subject

laminates, as well as for a unidirectional laminate. The table

also includes the longitudinal laminate strain at these temperatures.

It is seen in Table 2 that the temperature at which initial yielding

occurs is nearly independent of angle ply orientation while the

deformational responses are radically different.

Returning to Figures 6, 1, and 8 it can be seen that after

the matrix yields at approximately -70°F the fibers have a greater

role in determining the overall laminate response. Thus, in the

angle ply laminates, Figures 6 and 7, the expansion proceeds at a

greater rate while in the cross ply, Figure 8, the matrix dominated

contraction is severely curtailed.

Upon subsequent heating of each laminate it can be seen in
j

each figure that the stresses due to the mismatch in responses

of the constituent materials are relieved. The laminate thermal

response is again elastic as the load path moves away from the

yield surface. Further heating causes the stresses to build up

once again with the load path reaching another point on the yield

surface. During this elastic response, the angle ply laminates,

Figures 6 and 7, are contracting while the cross ply laminate,

Figure 8, is expanding. Yielding again affects the rate at which

these responses occur, speeding up the shrinking in the angle ply

laminates, Figures 6 and 7, while diminishing the growth rate of

the cross ply laminate, Figure 8.

Subsequent cooling to room temperature elicits another elastic

response. It is seen that at the end of the thermal cycle each

of the laminates possesses a different residual strain state.

The [+15/-15]s laminate is now examined under a second thermal

cycle which repeats the path of the first cycle. The second cycle

results are shown in Figure 10. Comparing Figure 10 with Figure 6,

it is seen that the longitudinal strain of the second cycle is

coincident with that of the first cycle. This occurs because

during the first thermal cycle the yield surface is centered

with respect to the subsequent thermal load path, i.e. temperature

range.
17



Successive thermal cycles will, therefore, retrace the original

laminate response. Note that this is a consequence of temperature

independent material properties. By introducing temperature dependency,

thermally induced hysteresis will occur (see rfesults of the next section

The obvious conclusion of these test problems is that

laminates which are designed to provide dimensional stability

for elastic thermal loading, will undergo significant deformation

when the thermal load causes the matrix material to respond

plastically.

The next problem examines the effect of the orbital thermal

cycle on an unsymmetric [+45/-4S] laminate. In Figure 11 it is seen

that the laminate response is qualitatively similar to that of the

previous problems (compared with Figure 8), with the laminate under-

going successively different mechanical phases or response. However,

since the new laminate is unsymmetric, it will experience changes of

curvature under this loading. Figure 12 is a plot of the twisting

curvature that occurs during the thermal cycle. This plot shows that

the plate will possess a residual twisting curvature upon completion

of the cycle.

MECHANICAL LOADS

The final problem set of this section studies the response of

a [+22.5/-22.S]s laminate under various mechanical load histories.

These load histories are (see Figure 13):

1. The load history, AT, where the laminate is loaded incre-

mentally in the axial direction by 1 ksi load steps to a

level of 7 ksi. The axial load increments are followed

by 1 ksi load increments in the transverse direction also

to a level of 7 ksi.
^

2. The load history, TA, where the sequence of axial then

transverse load increments of history AT are reversed.

18



3. The load history EQ where the axial and transverse load

increments of history AT are applied simultaneously.

Prior to the application of load, the laminate is assumed to be

stress free. Note that each load history leads to the same level

of final loading.

The laminate strains resulting from load history AT are shown in

Figures 14 and 15. These plots show that under this loading the

laminate undergoes four phases of response. The nature and cause

of these responses are best explained through the aid of Figure 16

which shows a schematic representation of the yield surface and its

sequential position in stress space. Prior to the application of

load, the load point is at the origin of stress space (no initial

stresses). As the axial load increments are applied, the load path

moves away from the origin and out towards the yield surface. Therefore,

during the first phase, the laminate is responding elastically.

Eventually the level of loading is such that the load path reaches

the yield surface and initiates plastic flow. That the matrix material

is responding plastically is indicated by the increased rate of

deformation in Figures 14 and 15. After the last axial load increment,

the first transverse load increment is applied. Though this added

load increases the level of loading on the laminate, in stress space

it actually corresponds to an unloading with respect to the yield

surface. Thus, this third phase of response is purely elastic.

Eventually, however, the transverse load increments cause the load

path to reach the yield surface again. This results in plastic

flow for the final phase of response.

Figures 17, 18, 19, and 20 show the laminate response under

the TA and EQ load histories. The development of these plots can

be explained in a manner similar to that of the AT load history.

Note that the total number of phases and the history of response

are quite different for all of the load histories.
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As a final consideration, an additional load history is examined.

Prior to the application of the load steps of history EQ let it be

postulated that the laminate has been cooled 100°F,from a

stress free temperature of 175°F. The load steps are then applied,

resulting in the deformational responses shown in Figures 21, and 22.

In these figures it is seen that the drop in temperature has resulted

in a minor amount of elastic pre-strain (this laminate has a small

coefficient of thermal expansion as per Figure 9). As compared to

Ficrures 19 and 20, these figures show a shift in the initial yield

point due to the presence of the substantial residual stresses that

exist prior to the mechanical loading.

The mechanical load problem clearly illustrates the path

dependent nature of laminate plasticity. In Tables 3 and 4 it is

seen that although the load histories terminate at an equal level

of loading, the final stress and strain fields can show quite

distinct differences. .Also, the rough accounting of residual pro-

cessing stresses shows the importance of these stresses. In the

problem examined here the presence of these stresses lead to

significant differences in the final laminate state. The existence

of these stresses imply that the load point at the beginning of the

load history is no longer at the origin in stress space. Depending

upon the nature of the subsequent loading such a condition can

lead to very surprising behavior (for instance, in the Appendix A see thu

Figure A-15 and its associated discussion).

THERMAL HYSTERESIS OF ANGLE PLY LAMINATES

Unlike the last section the problems to be studied here will

deal with materials whose thermphysical and mechanical properties

are temperature dependent. The approach of the temperature dependent

analysis is presented in the appendix and the basic considerations

developed in that part of the report will not be repeated here.

Instead, this section will undertake a study of thermal hysteresis

of both unidirectional and angle ply laminates since dimensional

stability is a critical factor in satellite design. It will be
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seen that when the temperature dependent matrix properties are taken

into account the changes in the thermal hysteresis of laminates can

arise solely from the behavior of the unidirectional layer and that

no other mechanism, such as system degradation, need be postulated

to account for such behavior.

The composite layer to be studied is the P100/6061 material of

the previous section with a 45% fiber volume fraction and with

constituent material properties as specified in Table 1. A stress

free state is assumed to exist at room temperature. Once again

the stress free state is chosen arbitrarily since the purpose is to
/

examine the computed response of metal matrix laminates with different

angle ply orientations.

The temperature cycle is the orbital thermal cycle previously

described. That is, the laminate is cooled from room temperature

to -255°F, heated to 275°F and then recooled. The temperature

history repeats this cycle as required.

Figure 23 shows the response of a unidirectional laminate

subjected to four cycles of the thermal loading. At the scale of

this plot the shift in the residual strain is barely visible. Figure

24 is an enlargement of the left hand edge of Figure 23. It shows

the shift in residual strain more clearly with the sequence of

successive cycles proceeding in the negative strain direction.

That is, under the thermal loading the laminate is changing,

albeit minutely. The underlying cause for this growth, the reasons

for which will be explained in detail, is the successive increase

in the matrix plastic strains (Figure 25). The matrix stress

also experiences corresponding small residual shifts as illustrated

in Figure 26.

The causes of plastic strain growth can be found by studying

the effects of temperature on the load path and on the yield

surface as the load path moves through stress-temperature space.

Figure 27 is a schematic.representation of the yield surface as

it sits in stress-temperature space, where for the purposes of

illustration, the multi-dimensional stress space has been reduced

to a plane and the ellipsoidal yield surface is represented as an

ellipse. The figure shows the yield surface as it would appear at
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room temperature and at the extremes of the orbital cycle. The size

of the yield surface varies since the strength parameter is related

to the uniaxial matrix yield stress which is affected by temperature,

During the thermal cycle the load path moves out along the stress

and temperature directions. After the load path reaches the yield

surface/plastic flow will occur under further loading.

Consider the sequence of events in Figure 28 which depicts the

load path as it develops under the thermal loadings. At room

temperature the laminate is stress free so that the load point is

at the origin of stress space. The yield surface is centered on

this origin. The thermal cycle begins with a cooling phase where

the matrix contracts and the fibers extend axially, thus, generating

stresses in the constituents. The load path moves away from the

origin and out towards the yield surface while descending in the

temperature direction. The yield surface grows since the uniaxial

yield stress increases at lowered temperatures. The rate at which

the load path moves along the stress coordinates is constantly

varying since the stiffness properties and the coefficient of

thermal expansion change with temperature. The load path eventually

reaches the yield surface. It does so at a higher level of loading

than that which would have been found from an analysis based on

room temperature properties (Figure 29). The load path then

displaces the yield surface, shifting it with respect to the origin

of stress space, and producing plastic flow. The rate of flow is

affected by the temperature, once again through the temperature

dependence of the material properties. Upon heating, the load path

moves away from the yield surface and the resulting deformational

response is elastic. The yield surface shrinks but does not

translate in the stress directions. As the temperature continues

to increase the load path again reaches the yield surface, this

time at a temperature higher than that predicted by a temperature

independent analysis (Figure 29). The resulting plastic flow

continues until the maximum temperature is reached. Note that the

yield surface is displaced first towards and then past its original

position in the stress coordinates. The temperature increase,
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therefore, works out the positive plastic strains and produces

negative plastic strains (refer to Figure 25). The rate of flow

during this heating phase is in general different than that which

occurred during the cooling phase. The final leg of the cycle

cools the laminate back down to room temperature. During this cooling

the laminate responds elastically so that the yield surface remains

in the position established at the maximum temperature. Therefore,

upon returning to the starting temperature there is a residual shift

of the yield surface with respect to its original position. With

further cooling the load path will reach the yield surface again,

this time at a temperature higher than that of the temperature

independent problem. This second cycle of loading will follow a

sequence of events comparable to that of the preceeding cycle.

The residual shift of the yield surface means that the first

cycle of thermal loading produced a residual plastic (and total)

strain state. This was also found to be true in the temperature

independent problem where for successive load cycles no higher levels
vji. residual strain were achieved. The yield surface had centered

itself with respect to the load path. This centering does not

occur in the temperature dependent problem; Table 5 shows that

the yield surface is continually shifted by successive load cycles

resulting in plastic strain growth and changes in laminate hysteresis.

As stated before, the cause for the plastic strain growth can

be found in the events that occur as the load path moves through

the temperature-stress space. A study of the history reveals two

basic sources for this growth. The first is the disparate'extent

to which the laminate is subjected to plastic straining over the

thermal cycle. In Figure 29 it is seen that plastic flow occurs

over a larger range of temperature upon cooling (approximately 225°)

then upon heating (approximately 175°). The second mechanism is the

temperature dependence of the rate of flow, since for the same

travel of temperature, different total plastic strains will occur

upon heating than upon cooling. The principal explanation then

is as follows. During cooling, plastic flow results in positive

plastic strains. During heating, the flow results in negative

plastic strains. Since, due to the aforementioned.mechanisms,
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these flows do not balance one another each successive .thermal cycle

leads to additional growth. (Note that for the temperature independent

problem the two zones of plastic flow occur over equal temperature

transits. Also, since the material properties are constant the

flow rates will be the same. Therefore, the negative strain flow

is balanced by the positive strain flow and no net laminate growth

occurs).

An additional problem considers the effects of the thermal

cycle on a [+15/-15]s and a [+30/-30]s laminate. The results of

these analyses are shown in Figures 30 and 31. These plots show

that the shifts in residual strain can be quite pronounced for

angle ply laminates. This is true in spite of the fact that the

subject laminates are close to a design that would lead to zero

coefficients of thermal expansion for purely elastic responses

(Figure 9). The cause for this behavior is found in the shear

stresses which induce and drive plasticity. By their very nature
angle ply laminates contain large in-plane shear stresses under

loading. During the thermal cycle these in-plane shear stresses

lead to extensive plastic flow. This magnifies the imbalance

in plastic straining that exists during the heating and cooling

phases. Thus, the resulting shifts in the hysteresis loops are

large. These results imply that the present method of selecting

metal matrix composite designs to result in near zero axial

thermal expansion coefficients may lead to unwanted material

behavior. The results shown in Figures 23 and 30 illustrate the

problem. The response of the unidirectional material, presented

in Figure 23, shows that although the material has an initial

nonzero thermal expansion, the subsequent hysteresis loops are

relatively stable and repeatable. On the other hand, the results

for the ±15° laminate presented in Figure 30, show that this

angle ply composite initially has a near zero axial thermal

expansion coefficient yet produces a large shift in residual

axial strain after each thermal cycle. These results must be

validated experimentally; however, from a design point of view

it may be more beneficial to develop a zero thermal expansion

material by increasing either the fiber modulus or fiber volume
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fraction in a unidirectional material than by utilizing angle

ply laminate orientations.

Figure 32 plots the thermal response of a [+45/-45]s laminate.

Under this loading the laminate is equivalent to a cross ply so that

no in-plane plate shear stresses are developed. Because of this

the thermal hysteresis is seen to be substantially smaller than that

of the angle plys, Figures 30 and 31.

The analysis has shown that the use of angle-ply laminates

to provide dimensional stability may be a problem when the thermal

loads are such as to induce plastic deformation in the matrix.

The results suggest that low layer angle 'designs will produce

near zero thermal expansion but large residual shifts in the

hysteresis loops. The hysteresis study suggests several courses

of action for material and component development.

An obvious effort is to seek to extend the range of elastic

behavior through matrix selection and metallurgical advances. Besides

this effort another area of study would be the control of secondary

properties such as temperature resistance and post-yielding stiffness.

In this way favorable design approaches may be achieved.

Another area of component improvement may be found in altering

the balance between fiber and matrix effects. For instance a uni-

directional laminate can theoretically achieve elastic dimensional

stability when provided with a high enough fiber content. Such a

design would require fiber contents approaching 60% (at least for

P100 fibers and aluminum matrices), a density level not readily

achievable by current processing procedures. Improving the processing

procedures would prove to be a worthwhile effort since a fiber

dominated system with the correct matrix may lessen the effect of

matrix plastic deformation on the overall laminate response. The same

result may also be achieved by resorting to high modulus fibers.

As a last comment, any design procedure that would reduce

shear stresses would lead to improvements in component performance.

This secondary consideration (such as stacking sequence, processing

methods, etc.) should be reviewed for the possible cause of extraneous

shear stressing.
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MODEL LIMITATIONS

The approximations used in the temperature dependent phase

average stress model discussed in detail in the appendix impose

certain limitations upon the accuracy of the laminated composite

material model. There appear to be three areas in which the

approximations may cause concern. These include the computation

of initial yielding, the anisotropic plastic behavior of the

matrix and the assumption that the matrix plastic modulus, h, is

temperature independent. Each of these limitations is discussed

in the following paragraphs.

The layer model does not compute the actual heterogeneous

stress field within the fiber and matrix but approximates these

stresses with uniform field based upon average values. Under a

general loading condition, the actual distributed stresses in

the matrix will cause yielding at some points in the material

before yielding will be predicted by the phase average model.

This will result in the phase average model overpredicting the

composite yield surface. This effect will be most noticeable

in transverse loading where the actual stress field in the matrix

is far from uniform. In axial, thermal, or shear loadings, however,

the matrix stress state is more nearly homogeneous and the phase

average model provides an excellent approximation.

An additional limitation of the phase average model is that

the matrix must be treated in the composite as if it is transversely

isotropic during plastic flow. Be examining the matrix flow rule,

equation (12) in the appendix, it can be seen that in general the

matrix plastic compliance may be fully populated so that during

yielding the matrix may behave as if it is completely anisotropic.

Therefore, under a general loading condition (i.e. not uniaxial)

the matrix may be deforming anisotropically while the composite

model at best must treat the matrix as transversely isotropic.

The quantitative effects of this assumption are discussed in the

appendix. Once again this effect will be strongest for transverse

loads where the matrix is in a general state of loading. For axial,

thermal, or shear loads the stresses in the matrix can be divided
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between a hydrostatic and a uniaxial component. In these cases

the assumed isctropy in the matrix is exact and the phase average

model is an accurate approximation of the matrix behavior.

The other limitation of the layer model is the assumption that

the plastic modulus is temperature independent. Based upon 6061

stress-strain data from MIL-HDBK-5, appendix reference A-7, the

plastic modulus is seen to vary by approximately 15% over the

range of room temperature to 300°F. This assumption may be improved

in the future, however, it significantly complicates the computations

of plastic strain and motion of the yield surface.
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CONCLUSIONS AND RECOMMENDATIONS

The results of this study have led to several important

conclusions regarding the structural behavior of metal matrix

composites. This program has developed an analytical model that

can be used to study the temperature dependent nonlinear behavior

of unidirectional metal matrix composite layers. The layer model

has been incorporated in a nonlinear laminate analysis which can

be employed to study the temperature dependent nonlinear response

of laminated metal matrix composites. The results of the analytical

studies have shown that if a unidirectional graphite/aluminum

material is heat treated to eliminate thermal hysteresis then an

angle ply laminate made of the same constituents, heat treated

in the same manner, should also exhibit no thermal hysteresis.

In other words, if the stresses thermally induced between the

fiber and matrix remain below the matrix yield strength in a

unidirectional material, then the additional stresses generated

in an angle ply laminate will not cause yielding. On the other

hand, the analysis has shown that if an angle ply laminate does

yield, it hysteresis loop will experience more motion than the

loop related to a unidirectional composite. This effect is

predicted to be strongest in a +22.5° angle ply laminate in which

the layer shear stresses reach a maximum. These results imply

that if an angle ply laminate is used to give a zero coefficient

of thermal expansion, it must be properly heat treated to prevent

any hysteresis because the hysteresis theoretically exhibited by

an angle ply will be much stronger than the hysteresis exhibited

by a unidirectional. This result implies that it may be more

beneficial to construct zero coefficient of thermal expansion

materials by utilizing higher modulus fibers or by increasing

the fiber volume fraction in the unidirectional materials.

It should be emphasized that the results described here are

based upon a theoretical model. Although the model has shown

good correlation with experimental data on unidirectional



materials, it has not been tested specifically against laminated

composite data. Therefore, the effects predicted here should

be corroborated by experimental data.
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SYMBOLS

A - Laminate Membrane Stiffness Matrix

B - Laminate Membrane-Bending Coupling Stiffness Matrix

D - Laminate Bending Stiffness Matrix

h - Plate Half Thickness

M - Bending Moment (mechanical)

M - Bending Moment (thermal)

N - Membrane Force (mechanical)
N
T - Membrane Force (thermal)

Q - Local Plane Stress Stress-Strain Matrix

Q - Global Plane Stress Stress-Strain Matrix

U - Plate Displacement in x Direction

U - Midplane Plate Displacement in x Direction

V - Plate Displacement in y Direction

V - Midplane Plate Displacement in y Direction

v,. - Fiber Volume Fraction

v - Matrix Volume Fraction
m

x - In-Plane Plate Coordinate

y - In-Plane Plate Coordinate

z - Through Thickness Plate Coordinate

Y - Shear Strain

T - Local Thermal Stress Vector

F - Global Thermal Stress Vector

AT - Temperature Change

e - Extensional Strain

0 - Strain Transformation Matrixe

6 - Stress Transformation Matrix
s

K - Plate Bending or Twisting Curvatures

a - Extensional Stress

T - Shear Stress
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SUBSCRIPTS

a - Axial

t - Transverse

SUPERSCRIPTS

f - Fiber

m - Matrix

(overbar) Average

(dot) Increment
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ANALYTICAL APPROACH

ANALYSIS LOOP

DETERMINE THE ELASTIC-PLASTIC STRUCTURAL STIFFNESS

AND THE THERMAL EXPANSION MATRIX

FOR AN INCREMENT IN LOADING AND TEMPERATURE

PERFORM AN INCREMENTAL STRESS ANALYSIS

I
REVIEW THE STRESS SOLUTION FOR CORRECTIONS

I
INCREMENT THE FIELD VARIABLES AND RETURN

(STEP l)

(STEP 2)

(STEP 3)

Figure 4. Flow Chart Showing Overall Approach To Incremental

Laminate Analysis.
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'igure 28. Schematic Diagram Showing Motion of Temperature

Dependent Matrix Yield Surface During Thermal Cycle

of Unidirectional Metal Matrix Layer

67



Temperature, °C

c
•H
(0

m
c•H

•H
tn
C
O

Q

(M

-150 -100

a

o

i

Temperature
Independent

Temperature
Dependent

P100/6061

= 45%

T = 24 "C (75°F)

(RT) = 121 MPa
(17.5 ksi

(M -r30Q -200 -100 0.0 100

Temperature (Peg °F)

200 300

Figure 29. Comparison of Temperature Dependent versus Temperature

Independent Solution for a 0° P100/6061 Laminate

68



Temperature, °C

o
iH
X

•H

•rH
•a3•p
-H
Cn

-150
r~

•100
—I—

Temp. Dep.

P100/6061

Vf = 45%

24°C (75°F)
m,a"(RT) =121 MPa

[±15]

_iao_

\\

-300 -200 '-100 0.0 100

Temperature (Peg °F)

200 300

Figure 30. Computed Longitudinal Laminate Strain versus Temperature

for a [±15] P100/6061 Laminates

69



X

•H
(0
n
-p
CO

(0
c

•H
TJ
3 '
-P
•H
m
c
o

VD

O
•

(N

O
•

O

o
•

CN

-150

Temperature, °C

-100 -50 0 50 100

Temp. Dep

[±301

P100/6061

Vf = 45%

T = 24eC (75°F)

om(RT) = 12lMPa(17.5 ks|L)
i i

-300 -200 -100 0 100

Temperature (Deg °F)

200 300

Figure 31. Computed Longitudinal Laminate Strain versus Temperature

for a [±30] P100/6061 Laminates

70



Temperature, °C

100

•=1"

o
.H
X

c
•H
(0
M
4J

(0

4J
•H

Tr, = 24 °C (75°F)

= 12lMPa (17.5 >

-300 -200 -100 0.0 100

Tejijperature (Peg 9Fl

200 300

?igure 32. Computed Longitudinal Laminate Strain versus Temperature

for a [±45]a P100/6061 Laminates

71



APPENDIX - NONLINEAR TEMPERATURE DEPENDENT BEHAVIOR

OF UNIDIRECTIONAL COMPOSITES

INTRODUCTION

The fundamental building block of the incremental laminate analysis is

the theory which is employed to compute the properties of the layers based

upon the properties of the fiber and matrix. For each load step in the

laminate analysis, the layer material model is used to compute elastic

lamina stiffnesses, to assess lamina yielding, and to calculate lamina post-

yield behavior. The layer model utilized in this study is termed the

temperature dependent phase average stress model. This theory is an

extension of a temperature independent analysis which was developed for the

Naval Surface Weapons Center, reference A-l. The following sections

describe the approach, results, and limitations of the unidirectional

composite model.

OBJECTIVES

The purpose of this task was to develop a material model which was

capable of predicting the nonlinear temperature dependent behavior of a

unidirectional composite based upon the properties of the constituent fiber

and matrix. The model was designed to be compatible with an incremental

laminate analysis. At the beginning of each load step it was used to

compute effective stiffnesses for each layer. At the end of each load step,

the layer stresses were employed to compute constituent stresses and assess

yielding and post-yield behavior. The primary application of the layer

model and the laminate analysis was to study the thermal hysteresis behavior

of metal matrix composites. However, the layer model and laminate analysis

were developed to include general combinations of thermal and mechanical

loadings.

APPROACH

The layer model is used to determine effective properties of a

unidirectional continuous fiber reinforced layer as shown in Figure A-l.
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Because the layer is allowed to have nonlinear path dependent material

properties, the model is incremental. Since the model is utilized primarily

to study the response of graphite/aluminum composites to orbital temperature

cycles, the analytical assumptions were chosen to best represent the

behavior of graphite and aluminum in the temperature range of approximately

-300°F to +300°F. The fibers were assumed to be elastic with properties

that are independent of temperature. The matrix was assumed to be

temperature dependent with stress-strain behavior that was represented as a

bilinear kinematically hardening material.

The theoretical basis for the material model includes the composite

cylinders assemblage, reference A-2, the concept of average constituent

stresses, references A-3 and A-l, and the theory of thermoplasticity,

reference A-4 and A-5. The composite cylinders assemblage provided the

theory for computing effective layer properties from the known fiber and

matrix properties. The average stress expressions were employed to

determine the instantaneous average stress state within the fiber and

matrix. The equations of thermoplasticity were utilized to define the yield

point and the post yield behavior of the composite based upon the nonlinear

response of the matrix.

The following sections describe the model in terms of its elastic

behavior, the method utilized to define the composite yield point, and the

post yield behavior of the composites.

Elastic Behavior

The incremental stress-strain relation for the temperature independent

fiber is

1J - Sijkl
dT (1)

where de.. is the fiber incremental strain tensor, S. .,, is the
1J f 1JKJ.

transversely isotropic fiber compliance, da, 1 is the fiber incremental
fstress tensor, a., is the transversely isotropic fiber thermal expansion and
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dT is the increment in temperature. For the matrix, whose properties vary

with temperaturej the incremental stress-strain relation is

,
de

m
ij

m m_ .
Sijkl dakl

3S m m da
I (T - To) dT (2)

where the superscript "m" signifies matrix properties and 8 represents the
3T

change in a property with respect to temperature. In this expression a..

represents a secant thermal expansion coefficient defined by temperature T

and T where T corresponds to the temperature at which the matrix thermal

strain is assumed to be zero,

can be written as

Alternatively, the matrix stress-strain law

, m
d£ij

m
ijkl kl dT (3)

where

m as m
ijkl m

7kl
+ a.

m da m

(T - T0> (4)

The quantity, /?.., represents an effective incremental change in the matrix
m

strain for a change in temperature. However, because ft.. contains a stress

related term it is not equal to a tangent thermal expansion coefficient.

Once the constituent stress-strain relations are defined, the

unidirectional composite properties can be written as

sijki - f
<, f <, m
ijkl'
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't, m
m' ijkl' (6)

Here the functions f and g correspond to the operations associated with the

composite cylinders assemblage, reference A-2, and v signifies the matrix

volume fraction. S..,, represents the composite transversely isotropic
* 1JKI ^-

compliance and ft.. represents the incremental change in composite strain for

a unit change in temperature. Using these quantities the composite stress-

strain relation is

de dT (7)

Notice that the composite properties are temperature dependent because of

the matrix properties, although the above stress-strain law is not

explicitly temperature dependent. The dependence arises through the matrix

compliance, and matrix thermal strain, /? which are utilized to..,,,

compute composite properties.

From reference A-l and A- 3, the average stress and strain increments in

the constituents can be related to the average stresses and strains on the

composite as

v- da.. + v da.. — da. .f ij m ij ij (8)

, f , mv,- de . . + v de . ,
f ij m ij

- de.
ij

(9)

These stresses and strains represent an average state within the constituent

and are not the actual distributed fields. A fundamental assumption of this

approach is that the actual heterogeneous states within the constituents can

be approximated by average states which are uniform throughout the material.

This is discussed more completely in references A-l and A-3.
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By substituting equations (1), (3), and (7) in equation (9) and

utilizing that result in equation (8), the average matrix stress increment
*

can be found as a function of the applied composite stresses, da^., and the

change in temperature, dT,

m

m

(S. ̂  - S* ) da* + (v,, af, + vv klmn klmn' mn v f kl m
- 0 , )dT (10)
Hcl' v '

where

S I (Sf - S m ) - Iijkl klmn klmn ijnrn

The tensor, S..,n, is simply the inverse of the matrix which is equal to the1JR1 f mfiber compliance, S,, , minus the matrix compliance, S...-.

*
For a load increment on the composite, da., and dT, when the matrix is

in an elastic state, these equations can be employed to compute the response

of the composite. At the beginning of the load step, S..,,, a,., and S.m,,

are evaluated from the known constituent properties, ft.. are evaluated from

the matrix properties and equation (4). The behavior of the composite

during the load increment is computed using the composite cylinders

assemblage, equations (5) and (6). The increment in matrix stresses during

the load step is computed from equation (10) and that result is utilized in

equation (8) to determine the increment in fiber stresses. Knowing the

stress increments, the strain increments are computed for the fiber, matrix,

and composite using equations (1), (3) and (7), respectively. The

increments in stress and strain are added to the total values to completely

define the state of the fiber, matrix and composite at the end of the

increment. Another load step can then be applied and the process is

repeated.

In order to check the validity of the elastic calculations a simple

problem was analyzed. It is well known that the strain state in a linear,

elastic material with temperature dependent properties is path independent,

reference A-6. In other words the total elastic strains in a temperature
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dependent material can be determined directly from Hooke's law if the

compliance and thermal expansion are evaluated at the present temperature.

The incremental elastic solution used in this analysis was checked by

comparing the integrated results to total stresses and strains computed from

elasticity theory.

The specific problem chosen was a unidirectional P100/6061 composite

with 45% fiber content cooled from 75eF to 0°F. The constituent properties

used in the analysis are shown in Tables A-l and A-2. Table A-l shows P100

fiber properties which were correlated with experimental data on epoxy,

aluminum, and magnesium matrix composites. Table A-2 shows 6061 aluminum

properties determined from MIL-HDBK-5, reference A-7. The strengths chosen

for the 6061 matrix were determined from correlations with thermal

hysteresis loops of P100/6061 composites, reference A-8, and are

approximately equal to 6061 in a T4 temper condition.

A comparison of the axial composite strains and axial matrix stresses

at 0°F computed from the total elastic solution or the incremental solution

is shown in Table A-3. The table shows that as the stepsize in the

incremental solution decreases from 15°F to 5°F to 1°F, the incremental

solution converges to the total elastic solution. Therefore, the

incremental solution computes the correct elastic behavior of the material

and its accuracy increases with decreasing stepsize, as expected.

Composite Yield Surface

The composite is assumed to yield when the average matrix stresses

satisfy the matrix yield function. The matrix was assumed to follow a von

Mises yield function with the following form, reference A-4,

(Sra. - . -3k (ID

where

s.m m . .- m
a,. - 1/3 a.,, 5.. - deviatoric stresses

kk ij
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e.? = e.? - 1/3 € . f o . . - deviatoric plastic strains
ij ij ' kk ij v

E™ Em
h = 2/3 t - plastic modulus

Em-Em

k2 = k2(T) = 2/9 am (T) - yield strength

The form of the yield function is chosen to represent a kinematic,

linear work hardening material. The yield function represents linear

hardening (i.e. the stress-strain curve is bilinear) because, h, the plastic

modulus is chosen to be a constant which depends upon the elastic modulus,

E, and the tangent modulus, E . The yield function also represents a

kinematically hardening material which means that during plastic flow, the

yield function moves in stress space but does not change shape. The motion

of the center of the yield function is described by the term, he.^.

At the end of each load step the matrix stress state was utilized in

equation (11) to assess yielding. If the stress state resulted in a value

of ^ which was less than zero, the matrix was in an elastic state and the

response of the composite could be computed using the elastic equations

described in the previous section. However, if the matrix stresses resulted

in a value of $ which equaled zero, the matrix and hence the composite were

yielding and deforming plastically.

Since the position of the matrix yield surface in stress space depends

explicitly on the matrix plastic strain, it was important that the final

elastic load step resulted in a matrix stress point which fell precisely on

the yield surface. It was, therefore, necessary to adjust the magnitude of

the final elastic load step so that the matrix stresses satisfied the

condition that #,=0. This procedure was complicated somewhat by the fact

that the matrix strength, a , was a function of temperature which meant that

the yield function, <f>, was capable of growing or shrinking during a load

step.

The calculation of the size of the final elastic load step necessary to

reach the matrix yield surface was accomplished using a Newton-Raphson
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technique and equivalent matrix stresses and strengths. The technique is

shown schematically in Figure A-2. From equation (11) it can be seen that <f>

will equal zero when the functions representing equivalent matrix stress and

strength intersect. At load step I, an approximation of the intersection

(point 1 in Figure A-2) can be determined from the values of stress and

strength at step I and the respective slopes of the stress and strength

functions determined from steps I and 1-1. This intersection, point 1, can

be utilized to reevaluate the stress and strength functions at load step

I+A.. . The new load step, I+A.. , is then used to compute new slopes of the

stress and strength functions which are then used to project .a new

intersection, point 2. This process continues until the difference between

the equivalent stress and equivalent strength satisfy a specified

convergence criterion. The value of A at that point defines the magnitude

of the load step necessary to reach the yield surface.

An example problem showing the behavior of the yield point finder and

the effect of the convergence criterion is shown in Table A-4. The sample

problem finds the yield temperature of a unidirectional P100/6061 panel with

a 45% fiber volume. The panel is assumed to be stress free at 75°F, the

matrix is assumed to have a room temperature yield strength of 17.5 ksi and

the step size chosen for this analysis is 10°F. The composite is cooled

from room temperature until it yields and the table shows the effect of the

convergence criterion upon the solution for the yield point. For each value

of the convergence criterion, the table shows the number of iterations

required by the Newton-Raphson scheme, the equivalent matrix stress, the

equivalent matrix strength, and the computed yield temperature. The results

show that as the convergence value decreases, the number of iterations

required increases and the agreement between stress and strength

dramatically improves. The results show that the solution converges rapidly

and a convergence value of 1 x 10 results in a very accurate solution for

the magnitude of the load step necessary to cause yielding.

Post-Yield Behavior

Once the matrix stresses have reached the yield surface any further

loading will cause the matrix to deform plastically which will affect the

behavior of the composite. The approach utilized in computing the plastic
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composite response is similar to that utilized in the elastic response.

First the matrix incremental stress-strain relation is determined from the

theory of plasticity. This stress-strain relation is utilized to define an

effective matrix compliance and thermal expansion. These properties which

represent the incremental response of the matrix are then utilized in the

composite cylinders assemblage to predict the incremental response of the

composite.

The post-yield behavior or flow rule of the matrix is determined by

applying several conditions to the matrix yield surface. During plastic

flow it is assumed that the stress point always remains on the yield

surface, therefore, <j> = 0. It is also assumed that although the yield

surface moves in stress space it does not change shape, therefore, d<£ = 0.

Additionally, the matrix plastic strain increment is assumed to be in the

direction of the outward normal to the yield surface, i.e. de,? dA 86 .

as.?

A further assumption is made in this model that, h, the plastic modulus

is independent of temperature. This greatly simplifies the calculations of

the motion of the yield surface and does not appear to be unreasonable when

applied to actual aluminum data. Since h depends upon both the elastic and

the tangent modulus, the assumption that h is constant with temperature

implies that as the elastic modulus decreases with increasing temperature

the tangent modulus also decreases. The tangent modulus at any temperature,

however, is prescribed by the elastic modulus and some constant value of h.

The constant can be evaluated from the measured elastic modulus and tangent

modulus at one specific temperature such as 75°F.

Applying these conditions, the matrix plastic strain increment in terms

of the material properties and stress state is:

mp
. -

m m m

3hk hk
(12)

Since the total matrix strain increment is the sum of the elastic and

plastic parts, the matrix stress-strain law can be written by combining

equations (3) and (12),
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m^, m c tan . m r m ,„,de. . = S..., da,, + o.. dTij ijkl kl ij (13)

m
where S.., fn is the tangent compliance of the matrix given by

mtan me
ijkl

mp (14)

me mpHere S. .,, is the standard elastic compliance and S..f, is defined by

rewriting the first term of equation (12) in terms of stress increments da
,m

m
kl

instead of stress deviator increments, dS, ,. The effective thermal

expansion term, S.., is defined as,

oo meoS . .. ,
ijkl m

3T K

oda
ra

1J hk
(S m )_ (15)

Notice that this expression is simply, ft.. plus an additional term which can

be thought of as the plastic thermal strain.

Having defined a matrix incremental stress-strain law, the composite

incremental stiffness and thermal expansion can be computed from the

composite cylinders assemblage such that

m
c tan

 = f/,. c tan
Sijkl f(vm' Sijkl ' (16)

and,

™^, _ tan
(V Sijkl ' (17)
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Here the symbols S..,, and 5.. are used to represent composite properties
ij k-L i j

in which the matrix is deforming plastically. The functional relationships,

f and g, however, are the standard composite cylinder relations. This

procedure, in effect, computes incremental composite properties by writing

the matrix stress-strain law in a form which appears to be elastic and then

uses the composite model which was developed for an elastic response.

Eventhough the model uses effective elastic relationships, the nonlinear

behavior is retained explicitly in the matrix calculations and implicitly in

the composite through the incremental formulation.

The matrix stress increment during plastic flow is evaluated using the

same procedure which was applied to the elastic material except that the

composite and matrix properties are changed to reflect plastic flow.

Specifically,

m tan
ijkl

m

f. - S.̂ an)da* + (v, o* +v «*- fi* )dTklmn klmn' ran v f kl m kl kl (18)

where

s tan (s f
ijkl klmn klmn ijmn

Notice that equation (18) is identical to its elastic counterpart, equation

(10), except that the matrix and composite properties have been modified.

Equations (12) through (18) can be employed to represent the post yield

behavior of the matrix and composite. The equations are based upon

infinitesimal changes, however, they are applied numerically as discrete

increments. The numerical approximation becomes apparent at the end of a

plastic load step when the stress point is no longer on the yield surface.

That is, the matrix stresses at the end of the step no longer satisfy the

condition that <j> = 0. This implies that there is an error in the matrix

plastic strain increment, de.° which must be corrected before the next load

step can be applied.
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The correction is accomplished numerically through a Newton-Raphson

scheme as shown in Figure A-3. At the end of the load step, the magnitude

of the plastic strain increment is computed as dX. Using this plastic

strain in the expression for <f> results in a value of <j>, which is not equal

to zero although a requirement of the plastic flow is that the stress point

and yield surface coincide. The error can be corrected by modifying the.

magnitude of the plastic strain increment. The modified magnitude, dA2, can

be evaluated by using the value of <f> and d<f> at dA, to project forward. This

procedure is repeated until the correct magnitude of dA is chosen so that <j>

equals zero at the end of the load step.

An example of this convergence behavior is shown in Table A-5. The

table shows the behavior of the plastic strain converger at a typical load

step in the plastic range. Specifically, the results are shown for a 45%

P100/6061 unidirectional plate at -105°F. The stress free temperature was

chosen as 75°F, the room temperature yield strength was chosen as 17.5 ksi

and the step size was -10°F. It can be seen from the previous discussion on

the yield point, Table A-4, that the material yielded at about -82.5°.

Therefore, the response at -105°F, shown in Table A-5, is well into the

plastic regime. The results shown in the table describe how the value of $

converges to zero and the effect that this has upon the matrix plastic

strain increment. At each plastic step in the analysis, this convergence

procedure is required so that at the end of the step the total matrix

strains are consistent with the matrix stress-strain law.

The equations which have been derived, completely define the behavior

of the composite material for arbitrary load histories. The equations were

utilized to create a computer program following the logic shown in the flow

chart, Figure A-4. The flow chart shows that at some initial state, it is

assumed that the stresses and properties of the constituents are known.

This, for example, could be the stress free state. For a specified load

increment, the model first assumes that the matrix is elastic and computes

matrix properties from equation (2), (3), and (4), and composite properties

from equations (5), (6), and (7). The composite load increment, which can

be any combination of stress and temperature, is applied in terms of da.,

and dT. Equation (10) is utilized to compute the resulting increment in

matrix stress. The matrix stresses are then employed in the yield function,
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equation (11), to assess yielding. If equation (11) shows that ^ is less

than zero, then the material is elastic and the initial assumption of

elastic matrix propertries was correct. Therefore, the values of dcr.. are
f

correct and the increment in fiber stresses da.. can be computed from

equilibrium, equation (8). The strain increments in the composite, matrix,

and fiber are computed from the appropriate stress-strain laws, equations

(7), (3), and (1) , respectively. The total values of stress and strain in

the composite and constituents are summed and the state at the end of the

increment is completely defined. The process can then repeat itself.

On the other hand, if (f> is not less than zero, then the assumption of

an elastic matrix was incorrect. In this case the matrix properties are

determined from equations (12) through (15) and the composite properties are

determined from equations (16) and (17). The composite load increment da.,

and dT is applied and the matrix stresses are evaluated using equation (18).

The solution procedure then continues as before with the fiber stress

increments computed from equation (8). The strain increments are then

evaluated using the plastic stress-strain laws for the matrix and composite,

the total stresses and strains are computed and the solution continues.

RESULTS

The theory described in the previous section was utilized to create a

computer code named TPLAS, Thermo-Plastic Layer Analysis. TPLAS was

exercised briefly to verify the analysis and to examine the behavior of the

composite. The following sections describe computations of thermal

hysteresis behavior and the response of the model to mechanical loads

including the effects of changing temperature.

Thermal Loads

Since the major objective of this effort was to develop an analytical

model capable of predicting the response of metal matrix composites to

thermal load histories, TPLAS was utilized to investigate three different

problems. The first analysis investigated the behavior of the composite

during its initial orbital cycle. The second problem, compared the

theoretical effects of a temperature dependent versus a temperature
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independent solution. The third problem analyzed several sequential thermal

cycles to track the history dependence of the composite. Each of these

analyses are discussed in the following paragraphs.

The response of the composite to an initial orbital load cycle resulted

in a very strong theoretical check on the computer code. Recall from the

flow chart, Figure A-4, that once the constituent stresses are computed, the

constituent strains are calculated from their appropriate stress-strain

laws. If the computer model is behaving correctly, the strains in the axial

direction, for the fiber, matrix, and composite must all be identical

because of the fundamental assumption of uniform axial strain in a

composite.

The axial strains computed by TPLAS for the composite, fiber, and

matrix for an initial orbital cycle are shown in Figures A-5, A-6, and A-7,

respectively. This thermal cycle contains an initial elastic response

during cooldown until the matrix yields. During further cooling the matrix

flows plastically. When the material is subsequently heated, the response

is elastic again until the matrix yields. Further heating causes additional

plastic straining until the maximum temperature is reached. Subsequent

cooling results in the final elastic response. Therefore, the composite and

matrix go through various states of elastic and plastic behavior. The

fiber, however, remains elastic through the entire thermal cycle. If the

strain histories shown in Figures A-5 through A-7 are overlayed or examined

closely it can be seen that the figures are identical. The fact that the

axial strains in the fiber, matrix, and composite are equal verifies that

the model is behaving properly and that the theoretical basis is valid for

this analysis.

A comparison of the temperature dependent solution with a simpler

temperature independent solution is shown in Figure A-8. Each analysis was

performed for the same P100/6061 plate which was stress free at room

temperature and contained a 45% volume fraction of fibers. The temperature

dependent solution used the properties shown in Table A-2 whereas the

temperature independent solution assumed the properties were constant at

their room temperature values. The predicted thermal cycles shown in Figure

A-8 show a significant effect of temperature dependent matrix properties

upon the thermal hysteresis. The temperature dependent model requires

greater temperature changes to cause yielding both during cooling and
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heating. The temperature dependent model also shows a larger magnitude of

residual strain at the end of the cycle. The comparison clearly shows that

the aluminum matrix properties which change during the thermal cycle have a

measurable effect upon the thermal strain behavior of the composite.

The theoretical response of the composite to subsequent thermal cycles

is shown in Figure A-9. The dashed line in the figure shows the thermal

strain history of the composite on the first cycle, i.e. beginning at a

stress free state. At the end of the cycle, the material is no longer

stress free, the yield surface has been shifted in stress space and the

response of a subsequent cycle is expected to be different. The solid line

shows that the subsequent cycle does indeed have a different strain history.

Notice that on the first cycle the composite yielded at about -80°F whereas

during the second cycle the composite yielded much earlier, at about 0°F.

As the subsequent thermal cycle continues, the composite response is similar

to that of the first cycle except for a slight offset due to a shift in

residual stress (see the main text chapter on thermal hysteresis). Although

the residual stress shift is theoretically slight, changes in the

temperature extremes of as little as ±5°F, will significantly alter the

response. This is true because altering the temperature extremes will

change the amount of plastic strain in the matrix which will change the

position of the yield surface. These changes in load history will cause the

thermal hysteresis curve to move so that subsequent cycles no longer

approximately repeat themselves. This fact may explain some of the shifts

in the thermal hysteresis curves seen in experimental data.

Mechanical Loads

Since the layer model is employed in a laminate analysis it must be

able to account for mechanical as well as thermal loads. The layer model is

capable of predicting the response of mechanical loads consisting of all six

stress components. Since laminated plate theory assumes a state of plane

stress sample problems are presented for the three stress components of
* * *

interest, a11 , &nn, and r->~. Results were computed for a P100/6061 plate

with a 45% fiber volume fraction. The plates were loaded axially,

transversely, and in shear. In each case, mechanical loads were applied at
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room temperature. The load paths were chosen so that the matrix yielded,

deformed plastically and then unloaded.

The results for the axial, transverse, and shear loads are shown in

Figures A-10 through A-12, respectively. Each composite stress-strain curve

shows the expected elastic behavior, plastic flow and elastic unloading. As

expected, the transverse and shear curves show much stronger nonlinearity

than the axial curve since the transverse and shear response is dominated by

the matrix whereas the axial response is dominated by the fiber. These

results are identical to those determined for the temperature independent

model, reference A-l. In reference A-l, the phase average predicted stress-

strain curves were compared to more complex finite element solutions. The

comparisons showed that the agreement between the solutions was good and

that the phase average model, although approximate, was a more cost

effective tool for incorporation in a laminate analysis.

In order to investigate the effects of temperature dependent properties

on mechanical behavior, two problems were analyzed with combined mechanical

and thermal loads. Each problem used a 45% P100/6061 layer as the

composite. The material was assumed to be stress free at room temperature.

In the first problem the material was loaded axially at the same time that

it was cooled from room temperature to -25°F. In the second problem the

material was loaded transversely while it was cooled to -25°F.

The results for the axial loads are shown in Figure A-13 and the

results for the transverse loads are shown in Figure A-14. Each figure

shows a comparison of the temperature dependent solution and the temperature

independent solution. Notice first by comparing Figure A-13 and A-10 that

the temperature change results in a much lower axial yield stress. The

axial response shows a composite with no temperature change having a yield

strength of about 90 ksi whereas the composite with a temperature change has

a strength of about 45 ksi. The reduction in axial yield stress is due to

the additional stresses that arise in the matrix because of the mismatch in

fiber and matrix thermal expansion coefficients. Figure A-13 also shows

that since the axial loads are dominated by the fiber, the difference

between the temperature dependent and temperature independent solutions are

very slight. On the other hand, the transverse loads presented in Figure A-

14 show an effect of temperature dependent properties. Notice that as the

temperature decrease the matrix modulus increases, which translates into a
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somewhat higher elastic modulus for the temperature dependent response.

Also notice that as the temperature decreases the matrix yield strength

increases which results in a higher yield strength for the temperature

dependent response.

The final mechanical load case which was analyzed was a comparison of

the transverse stress-strain behavior of the composite at room temperature

and at an elevated temperature. In this case an attempt was made to study

the effect that processing may have on the mechanical behavior of the

composite. In each case the composite was assumed to be stress free at

295°F. This temperature was chosen arbitrarily since actual processing

temperatures are on the order of 800°F to 900°F. However, because of creep

in the aluminum the stress free temperature is much lower than the

processing temperature so that 295°F is not a totally unrealistic stress

free state. For each load case the material was initially cooled to room

temperature. In one case the material was then loaded transversely to

represent a room temperature stress-strain curve. In the other case, after

cooling, the material was first heated to 175°F and then loaded transversely

to represent an elevated temperature stress-strain curve.

A comparison of the results is shown in Figure A-15. It may be

expected that, since the transverse behavior is dominated by the matrix and

the matrix becomes weaker at elevated temperatures, the elevated temperature

composite would have a lower yield strength then the room temperature

composite. The analysis, however, shows just the opposite effect. This can

be explained by the thermally induced residual stresses in the matrix.

Cooling from elevated temperatures causes a large build up of residual

stresses in the matrix so that subsequent mechanical loading at room

temperature results in a low composite yield point. However, if the

material is heated before it is loaded some of the residual stresses will be

relieved explaining the higher yield point in the elevated temperature

response.

The results presented in this section show that the temperature

dependent phase average stress model is capable of predicting nonlinear

layer behavior which can be utilized in a study of nonlinear laminated

composites. The results have shown that the temperature dependence of the

matrix properties is significant, Figure A-8. The analysis has also shown

that the response of the composite material depends strongly on both the
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load history, Figure A-9, and the interaction between the constituents,

Figure A-15.

MODEL LIMITATIONS

The approximations used in the temperature dependent phase average

stress model impose certain limitations upon the accuracy of the solution.

There appear to be three areas in which the approximations may cause

concern. These include the computation of initial yielding, the anisotropic

plastic behavior of the matrix and the assumption that the matrix plastic

modulus, h, is temperature independent. Note that the remaining matrix

properties, i.e. Young's modulus, Poisson's ratio, thermal expansion, and

yield strength, may all be arbitrary functions of temperature. Each of

these limitations is discussed in the following paragraphs.

The layer model does not compute the actual heterogeneous stress field

within the fiber and matrix but approximates these stresses with uniform

field based upon average values. This assumption is shown explicitly in

Figure A-16 where the phase average model is compared to a concentric

cylinder model of a P100 fiber in a 6061 matrix under a negative temperature

change. The comparison shows that the two models give identical results for

axial matrix stress shown as a in Figure A-16. The results presented in
ZZ

Figure A-16 also show that the transverse stresses computed by the phase

average model approximate the actual hoop and radial stress components.

Under a general loading condition, the actual distributed stresses in the

matrix will cause yielding at some points in the material before yielding

will be predicted by the phase average model. This will result in the phase

average model overpredicting the composite yield surface, as shown in Figure

A-17. In terms of a stress-strain curve, Figure A-18 shows the comparison

of the transverse behavior predicted using either the phase average model or

a more accurate finite element solution. Here it can be seen that the phase

average model overpredicts the yield point and neglects some of the local

nonlinearity caused by the growth of the plastic zone in the matrix.

However, once the matrix has fully yielded, the two solutions parallel each

other during further plastic loading. This effect will be most noticeable

in transverse loading where the actual stress field in the matrix is far

from uniform. In axial, thermal, or shear loadings, however, the matrix
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stress state is more nearly homogeneous and the phase average model provides

an excellent approximation.

An additional limitation of the phase average model is that the matrix

must be treated in the composite as if it is transversely isotropic during

plastic flow. By examining the matrix flow rule, equation (12), it can be

seen that in general the matrix plastic compliance may be fully populated so

that during yielding the matrix may behave as if it is completely

anisotropic. Therefore, under a general loading condition (i.e. not

uniaxial) the matrix may be deforming anisotropically while the composite

model at best must treat the matrix as transversely isotropic. For axial,

thermal, or shear loads the stresses in the matrix can be divided between a

hydrostatic and a uniaxial component. In these cases the assumed isotropy

in the matrix is exact and the phase average model is an accurate

approximation of the matrix behavior.

To assess the effects of this assumption a problem was analyzed where

the composite was assumed to contain no fibers and was simultaneously loaded

axially and transversely with different magnitudes of stress. In reality,

the response of the composite and the matrix should be identical since there

are no fibers. However, the model assumes the composite is transversely

isotropic and the computed composite strains are based upon that assumption.

On the other hand, the matrix flow rule is programmed explicitly so that the

matrix strains are computed for an anisotropic material.

The comparison of the matrix and composite strains after a significant

amount of plastic straining is shown in Figure A-19 and Table A-6. Figure

A-19 compares the axial and transverse load-strain histories computed using

either the composite equations or the matrix equations. The composite

contains no fibers and is loaded with a stress of a in the axial directiono
and 1/2 a in the transverse direction. The composite and matrix strains

are shown to coincide in the elastic region. During plastic flow, however,

the matrix flow rule results in what appears to be a slightly stiffer

material. Notice that this effect appears to be more significant in the

direction of the smaller load increments. That is, the error appears to be

more significant in the transverse strains than in the axial strains. The

numerical values of the composite and matrix strains at the end of this load

path are shown explicitly in Table A-6. For this particular problem the

error is seen to be on the order of 1 to 2%. Once again this effect will be
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strongest for transverse loads where the matrix is in a general state of

loading.

The other limitation of the layer model is the assumption that the

plastic modulus is temperature independent. Based upon 6061 stress-strain

data from MIL-HDBK-5, reference A-7, the plastic modulus is seen to vary by

approximately 15% over the range of room temperature to 300°F. This

assumption may be improved in the future, however, it significantly

complicates the computations of plastic strain and motion of the yield

surface.

SUMMARY

Based upon the results presented here the temperature dependent phase

average stress model appears to be an excellent tool for studying the

nonlinear behavior of metal matrix composites. The model was shown to give

expected elastic results and to converge rapidly and accurately for the

plastic response of the composite. Sample problems were run which showed

that the temperature dependence of the matrix has a significant effect and

that the response-of the composite will be strongly history dependent.

The limitations of the model were shown to have the strongest effect on

the transverse stress-strain behavior which is not unexpected since that

loading condition creates the most heterogeneous stress field in the

composite. Comparisons of transverse stress-strain curves computed using

the phase average model and a more exact finite element model showed that

the limitations are most significant near the yield point. In the elastic

range or after the matrix has fully yielded the phase average model was seen

to approximate the composite response well. For axial, thermal, or shear

loads the stresses in the matrix can be divided between a hydrostatic and a

uniaxial component. In these cases the assumed isotropy in the matrix is

exact and the phase average model is an accurate approximation of the matrix

behavior. >
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SYMBOLS

E - Young's modulus

E - Tangent modulus when a > a

e.. - Deviatoric strain tensor

h - Plastic modulus parameter used in matrix yield surface

k - Yield strength parameter used in matrix yield surface

S. ., , - Compliance tensor

s.. - Deviatoric stress tensor

T - Temperature

T - Reference temperature

dT - Temperature increment

v - Matrix volume fractionm
a.. - Thermal expansion vector

P.. - Effective elastic thermal expansion vector, defined in

equation 4

5.. - Kronecker's delta

5.. , 6.. - Effective plastic matrix (m) or composite (*) thermal

expansion vector, defined in equations (15) and (17)

de. . - Strain tensor increment
ij

a - Yield strength

da.. - Stress tensor increment

<t - Yield surface

SUPERSCRIPTS

f - Fiber

m - Matrix

* - Composite

I - Inverse

tan - Tangent property
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Table A-3. Comparison of Elastic Composite Strains and Matrix

Stresses for P100/6061 Plate Cooled from 24°C (75°F)

to -18°C (0°F), V. = 45%

Elastic

Solution

—

*
ell

ye

-41.67

~m
°11

MPa

63.00

psi

9138

Incremental

Solution

Stepsize = 8.3°C(15°F)

Stepsize = 2.8°C(5°F)

Stepsize = (0.6°C) (1°F)

*

ue

-41.76

-41.70

-41.68

°11

MPa

63.90

63.03

63.00

psi

9148

9141

9138
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Table A-4. Effect of Convergence Criterion en Solution for Temperature

Dependent Yield Point

m
[P100/6061, Vf=45%, To=24°C(75°F), a (RT)=12lMPa(17.5ksi), AT = -5.6°C(-10°F)]

Convergence

Criterion

1 x 10"2

1 x 10~4

1 x 10"6

1 x ID'10

No.
of

Iterations

1

2

2

3

V"1!!-'''!!1 (si:-heTj>
MPa

104.1090090

104.1230308

it

104.1230313

\P
MPa

104.1223009

104.1230313

M

104.1230313

Ty
°c

-63.62619361

-63.62619411

11

-63.62619411

-

1 x 10~2

1 x 10~4

1 x 10~6

1 x 10-10

-

1

2

2

3

ksi

15.099203626

15.101237241

-

15.101237325

ksi

15.101131381

. 15.101237321

II

15.101237325

OF

-82.527148545

-82.527149439

II

-82.527149439
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Table A-5. Example of Plastic Strain Convergence Scheme Used to

Insure Yield Surface Coincides With Stress Point

P100/6061, Vf = 45%, TQ = 24°C(75°F), a™(RT)=12lMPa(17.5ksi),.T=T76°C(-105°F)

Iteration

-

1

2

3

4>

(Pa)2

-1986

8.94xlO~5

1.77xlO~7

(psi)2

-41.79

1.88xlO~6

3.73xlO~9

*!S
HE

94.176218919

94.175538578

94.175538578
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Table A-6. Comparison of Composite and Matrix Strains in

Plastic Range Computed Using Phase Average Stress

Model for Composite with 0% Fibers Under General

Load [CTII = 275 MPa (40 ksi), a22 = 138 MPa (20 ksi)]

Strain

Component

•11

£22

Matrix Strain

0.9332

0.0697

Composite Strain

0.9328

0.0706

Error

0.0429

1.29

Note: Error is caused by the fact that the composite compu-

tations must treat the matrix as transversely isotropic
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solutions
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Results show that elevated temperature material is

stronger because the heating cycle has relieved residual

matrix stresses.
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